388 research outputs found

    Locality with staggered fermions

    Full text link
    We address the locality problem arising in simulations, which take the square root of the staggered fermion determinant as a Boltzmann weight to reduce the number of dynamical quark tastes. A definition of such a theory necessitates an underlying local fermion operator with the same determinant and the corresponding Green's functions to establish causality and unitarity. We illustrate this point by studying analytically and numerically the square root of the staggered fermion operator. Although it has the correct weight, this operator is non-local in the continuum limit. Our work serves as a warning that fundamental properties of field theories might be violated when employing blindly the square root trick. The question, whether a local operator reproducing the square root of the staggered fermion determinant exists, is left open.Comment: 24 pages, 7 figures, few remarks added for clarity, accepted for publication in Nucl. Phys.

    Properties of light scalar mesons from lattice QCD

    Full text link
    Lattice QCD with Nf=2N_f=2 flavours of sea quark is used to explore the spectrum and decay of scalar mesons. We are able to determine the b1b_1 - a0a_0 mass difference and this leads to the conclusion that the lightest non-singlet scalar meson (a0a_0) has a mass of 1.01(4) GeV. We determine from the lattice the coupling strength to KK and πη\pi \eta. We compute the leptonic decay constant of the lightest non-singlet scalar meson. We discuss the impact of these lattice results on the interpretation of the a0(980)a_0(980) state. We also discuss K0K^*_0 states.Comment: version accepted by Phys Rev

    Nucleon electromagnetic form factors in two-flavour QCD

    Get PDF
    We present results for the nucleon electromagnetic form factors, including the momentum transfer dependence and derived quantities (charge radii and magnetic moment). The analysis is performed using O(a) improved Wilson fermions in Nf=2 QCD measured on the CLS ensembles. Particular focus is placed on a systematic evaluation of the influence of excited states in three-point correlation functions, which lead to a biased evaluation, if not accounted for correctly. We argue that the use of summed operator insertions and fit ans\"atze including excited states allow us to suppress and control this effect. We employ a novel method to perform joint chiral and continuum extrapolations, by fitting the form factors directly to the expressions of covariant baryonic chiral effective field theory. The final results for the charge radii and magnetic moment from our lattice calculations include, for the first time, a full error budget. We find that our estimates are compatible with experimental results within their overall uncertainties.Comment: 22 pages, 10 figures, citations modifie

    The locality problem for two tastes of staggered fermions

    Full text link
    We address the locality problem arising in simulations, which take the square root of the staggered fermion determinant as a Boltzmann weight to reduce the number of dynamical quark tastes from four to two. We study analytically and numerically the square root of the staggered fermion operator as a candidate to define a two taste theory from first principles. Although it has the correct weight, this operator is non-local in the continuum limit. Our work serves as a warning that fundamental properties of field theories might be violated when employing blindly the square root trick. The question, whether a local operator reproducing the square root of the staggered fermion determinant exists, is left open.Comment: Talk presented at Lattice2004(theory), Fermilab, June 21-26, 200

    Improved interpolating fields for hadrons at non-zero momentum

    Get PDF
    We generalize Gaussian/Wuppertal smearing in order to produce non-spherical wave functions. We show that we can achieve a reduction in the noise-to-signal ratio for correlation functions of certain hadrons at non-zero momentum, while at the same time preserving a good projection on the ground state.Comment: 10 pages, 7 figures. Version accepted for publication in EPJ

    Monte Carlo simulations and field transformation: the scalar case

    Get PDF
    We describe a new method in lattice field theory to compute observables at various values of the parameters lambda_i in the action S[phi,lambda_i]. Firstly one performs a single simulation of a ``reference action'' S[phi^r, lambda_i^r] with fixed lambda_i^r. Then the phi^r-configurations are transformed into those of a field phi distributed according to S[phi,lambda_i], apart from a ``remainder action'' which enters as a \break weight. In this way we measure the observables at values of lambda_i different from lambda_i^r. We study the performance of the algorithm in the case of the simplest renormalizable model, namely the phi^4 scalar theory on a four dimensional lattice and compare the method with the ``histogram'' technique of which it is a generalization.Comment: Latex, 23 pgs, 8 eps-figures include
    corecore